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Computational Logic on Fock Space

S. Gudder1

Received

Fock space may provide an important mathematical model for quantum computation.
For this reason, it may be useful to generalize previous work on computational logic
to the Fock space framework. The basic construction of this computational logic is the
set D(H ) of density operators on a Fock space H . We first define n-sector pn(ρ) and
total probabilities p(ρ) of elements ρ ∈ D(H ). We next discuss NOT, AND, and OR
operations onD(H ). Natural equivalence classes and Scotian elements are described. We
also discuss minimal and maximal elements and quantum numbers for the equivalence
classes. We finally treat the operation

√
NOT and the stronger equivalence classes

associated with this operation.

KEY WORDS: computational logic; Fock space; quantum gates; quantum
computation.

1. INTRODUCTION

There are two main mathematical models for quantum computation, the quan-
tum gate model and the quantum Turing machine model. In the quantum gate model
one takes a Hilbert space H of sufficiently large finite dimension for a desired ac-
curacy and represents quantum gates by unitary operators on H. In this framework
the basic computational structure is a two-level quantum system called a qubit
(Nielsen and Chuang, 2000; Pittenger, 2001). The pure states of a qubit are rep-
resented by unit vectors in the two-dimensional Hilbert space C

2. The Hilbert
space H usually has the form H = C

2n
which is the state space for an n-qubit

system. In this case we have n qubits and the Hilbert space is the n-fold tensor
product

H = C
2 ⊗ · · · ⊗ C

2 = ⊗n
C

2

We now briefly comment on the quantum Turing machine model (Nielsen
and Chuang (2000). The simplest machine language for any computer consists of
words constructed from a binary alphabet A = {0, 1}. We identify the letters of A
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with an orthonormal basis |0〉, |1〉 for C
2. Let

K = C ⊕ C
2 ⊕ ⊗2

C
2 ⊕ ⊗3

C
2 ⊕ · · · ⊕ ⊗n

C
2 ⊕ · · ·

be the tensor algebra over C
2. Of course, K corresponds to a full Fock space in

quantum field theory. There is a bijection between the set of words over A and
an orthonormal basis of K. Indeed we identify 1 ∈ C with the empty word and if
w = x1x2 · · · xn is a word over A of length n, we identify w with the basis element

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, xi ∈ A, i = 1, . . . , n

Of course, there is a lot more to a quantum Turing machine than this set of words.
However, it is not our purpose to give a full discussion of quantum Turing machines
here. We merely want to point out the importance of the computational space K
as a motivation for our studies.

Previous studies (Cattaneo et al., 2002; Cattaneo et al., preprint; Dalla Chiara,
2002; Gudder, 2003) of quantum computational logic have taken place in the
Hilbert space H = ⊗n

C
2. More precisely, the dimension of H has been left un-

specified so technically the relevant space is ∪∞
n=1 ⊗n

C
2 which is not a Hilbert

space. Our present work discusses a quantum computational logic over the space

H = C
2 ⊕ ⊗2

C
2 ⊕ ⊗3

C
2 ⊕ · · · ⊕ ⊗n

C
2 ⊕ · · ·

which is the full Fock space except for the vacuum for which we do not seem
to have a use. There are several advantages to working on H . As we mentioned
earlier except for the empty word, H is a Hilbert space that is important for
the description of quantum machines. Moreover, if relativistic effects become
important in the operation of quantum computers then quantum field theory will
be an essential ingredient for their description. In this case, a Fock space framework
will be necessary. For our present discussions the full Fock space is employed so
we are assuming that individual qubits are distinguishable. Until now almost all
investigations in quantum computation and quantum information have assumed
distinguishability. This is because the qubits are far enough apart so that their
wave functions have essentially nonoverlapping support or the qubits have definite
locations so they can be distinguished. However, it is likely as more sophisticated
quantum computers are constructed and studied that this assumption will no longer
be valid. Thus, later studies may involve symmetric or antisymmetric Fock spaces.
In fact, research on Fermionic and Bosonic quantum computation has already
begun (Bravyi and Kitaev, 2002; Eckert et al., 2002).

Another advantage of our present approach is that the states appear in the
same Hilbert space so they can be combined naturally whereas in previous work
the states could be in different Hilbert spaces. For example, we can have mixtures
of states or superpositions of pure states involving different numbers of qubits.
Finally, from a mathematical point of view, the resulting computational logic has
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a more complex and interesting structure. We refer the reader to the abstract for a
summary of the contents of this paper.

2. PROBABILITIES OF STATES

In the theory of quantum computation, a qubit is a two-dimensional quantum
system. A pure qubit state is represented by a unit vector |ψ〉 in the Hilbert space
C

2. Denoting the standard orthonormal basis for C
2 by |0〉 = (1, 0), |1〉 = (0, 1),

we call {|0〉, |1〉} the computational basis for the qubit. We can then write |ψ〉 =
a|0〉 + b|1〉 where a, b ∈ C with |a|2 + |b|2 = 1. For a positive integer n, an n-
qubit is a quantum system consisting of n distinguishable qubits. In this case, the
pure states are represented by unit vectors in ⊗n

C
2 = C

2n
. The 2n unit vectors of

the form |i1〉 ⊗ · · · ⊗ |in〉, i j ∈ {0, 1}, j = 1, . . . , n give the computational basis
for an n-qubit. It is standard practice to use the notation

|i1i2 · · · in〉 = |i1〉|i2〉 · · · |in〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉
An arbitrary pure n-qubit state |ψ〉 ∈ C

2n
, ‖ψ‖ = 1 has the form

|ψ〉 =
∑

ai1···in |i1 · · · in〉 (2.1)

where ai1···in ∈ C with
∑ |ai1···in |2 = 1, i j ∈ {0, 1}, j = 1, . . . , n.

Employing (2.1) we can write

|ψ〉 =
∑

ai1···in−10|i1 · · · in−10〉 +
∑

ai1···in−11|i1 · · · in−11〉
= |ψ0〉 + |ψ1〉 = ∣∣ψ̃0

〉|0〉 + ∣∣ψ̃1
〉|1〉

where |ψ1〉 ⊥ |ψ1〉 and ‖ψ1‖2 + ‖ψ1‖2 = 1, and ‖ψ̃0‖ = ‖ψ0‖, ‖ψ̃1‖ = ‖ψ1‖.
We call |ψ0〉 a 0-vector and |ψ1〉 a 1-vector. Thus any pure n-qubit state has a
unique representation as the sum of a 0-vector and a 1-vector in the computational
basis. We think of a 0-vector as having truth value “false” and a 1-vector as having
truth value “true.”

We now form the full Fock space (except for the vacuum)

H = C
2 ⊕ ⊗2

C
2 ⊕ ⊗3

C
2 ⊕ · · · ⊕ ⊗n

C
2 ⊕ · · ·

= C
2 ⊕ C

22 ⊕ C
23 ⊕ · · · ⊕ C

2n ⊕ · · ·
We call ⊗n

C
2 the n-sector in the Hilbert space H . The n-sector projection is the

orthogonal projection P (n) : H → ⊗n
C

2 n = 1, 2, . . . . Letting P (n)
0 be the orthog-

onal projection onto the span of the 0-vectors in ⊗n
C

2 and P (n)
1 the orthogonal

projection onto the span of the 1-vectors in ⊗n
C

2, we have that

P (n)
0 + P (n)

1 = P (n) n = 1, 2, . . .
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Letting P1 be the orthogonal projections onto the span of the i-vectors, i = 0, 1,
we have that P0 = ∑

P (n)
0 and P1 = ∑

P (n)
1 .

Let D(H ) be the set of all density operators on H . Then D(H ) is a σ -convex
set in the sense that if ρi ∈ D(H ) and λi ≥ 0 with

∑
λi = 1, then

∑
λiρi ∈ D(H ).

The extreme points of D(H ) are the one-dimensional projections Pψ = |ψ〉〈ψ |
onto the span of a unit vector |ψ〉 which we identify with a pure state |ψ〉. For
ρ ∈ D(H ) define ρn = P (n)ρ P (n). Then ρn is a positive trace class operator and∑

tr(ρn) =
∑

tr
(
P (n)ρ

) = tr
(∑

P (n)ρ
)

= tr(ρ) = 1 (2.2)

For ρ ∈ D(H ) we define the probability of the n-sector in the state ρ to
be pρ(n) = tr(ρn), n = 1, 2, . . . . Applying (2.2) we have that

∑
pρ(n) = 1. We

define the n-sector probability of ρ to be

pn(ρ) = tr
(
P (n)

1 ρn
) = tr

(
P (n)

1 ρ
)

n = 1, 2, . . .

and the probability of ρ to be

p(ρ) =
∑

pn(ρ) = tr(P1ρ)

Of course, pn(ρ) ≤ pρ(n) and 0 ≤ p(ρ) ≤ 1. Notice that pn(ρ) = pρ(n) is equiva-
lent to P (n)

1 ρ P (n)
1 = ρn which is equivalent to P (n)

0 ρ P (n)
0 = 0. We define the n-sector

conditional probability of ρ to be

p(ρ | n) =
{

pn(ρ)pρ(n) if pρ(n) �= 0

0 otherwise

We then have that pn(ρ) = pρ(n)p(ρ | n) and

p(ρ) =
∑

n

pρ(n)p(ρ | n)

If ρ(i) ∈ D(H ) and λi ≥ 0 with
∑

λi = 1, then

p
(∑

λiρ
(i)

)
= tr

(
P1

∑
λiρ

(i)
)

=
∑

λi tr
(
P1ρ

(i)
) =

∑
λi p

(
ρ(i)

)
Hence, p preserves convex combinations. In a similar way, pn preserves convex
combinations, n = 1, 2, . . . . Moreover, letting ρ = ∑

λiρ
(i) we have that

pρ(n) = tr
(
P (n)ρ

) = tr
(

P (n)
∑

λiρ
(i)

)
=

∑
λi tr

(
P (n)ρ(i)

)
=

∑
λi pρ(i) (n)

We denote the identity matrix on ⊗n
C

2 by In . Let X be the Pauli matrix

X =
[

0 1

1 0

]
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and define the unitary matrix Nn on ⊗n
C

2 by Nn = In−1 ⊗ X , n = 1, 2, . . . . Define
the unitary operator N on H by

N = P (1) N1 P (1) + P (2) N2 P (2) + · · · = N1 ⊕ N2 ⊕ · · ·
and for ρ ∈ D(H ) define NOTρ ∈ D(H ) by NOTρ = NρN . Since N 2 = I we
have that NOT(NOTρ) = ρ. Since

N P (n)
1 N = Nn P (n)

1 Nn = P (n)
0

we have that

pn(NOTρ) = tr
(
P (n)

1 NOTρ
) = tr

(
P (n)

1 NρN
) = tr

(
P (n)

0 ρ
)

= tr
(
P (n)ρ

) − tr
(
P (n)

1 ρ
) = pρ(n) − pn(ρ) (2.3)

Applying (2.3) gives

p(NOTρ) =
∑

pn(NOTρ) =
∑

pρ(n) −
∑

pn(ρ) = 1 − p(ρ)

which is what we would expect. Moreover, if pρ(n) �= 0 then (2.3) gives

p(NOTρ | n) = pn(NOTρ)

pρ(n)
= 1 − pn(ρ)

pρ(n)
= 1 − p(ρ | n)

Notice that NOTρ and ρ give the same n-sector probabilities. This is because
P (n) N = NP(n) implies that

pNOTρ(n) = tr
(
P (n)NOTρ

) = tr
(
P (n) NρN

) = tr
(
P (n) N 2ρ

)
= tr(Pnρ) = pρ(n)

Finally, it is clear that NOT preserves convex combinations.
The quantum Toffoli gate T (m,n,1) : C

2m+n+1 → C
2m+n+1

is the unitary operator
given by Cattaneo et al. (2002, preprint)

T m,n,1 : |i1 · · · im j1 · · · jnk〉 = |i1 · · · im j1 · · · jn〉|im · jn + k (mod 2)〉
For ρ , σ ∈ D(H ) define the positive linear operator AND(ρ , σ )n : C

2n → C
2n

by

AND(ρ , σ )n =
∑
i, j

i+ j+1=n

T (i, j,1)ρi ⊗ σ j ⊗ |0〉〈0|T (i, j,1)

Defining

AND(ρ , σ ) = AND(ρ , σ )3 ⊕ AND(ρ , σ )4 ⊕ · · ·
we have

tr (AND(ρ , σ )) =
∑

n

∑
i, j

i+ j+1=n

tr(ρi )tr(σ j ) =
∑
i, j

tr(ρi ) tr(σ j ) = 1
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so that AND(ρ , σ ) ∈ D(H ). It is easy to check that AND preserves joint convex
combinations in both arguments. It follows from Gudder (2003) that

pn (AND(ρ , σ )) = tr
(
P (n)

1 AND(ρ , σ )
) =

∑
i, j

i+ j+1=n

tr
(
P (i)

1 ρ
)
tr
(
P ( j)

1 σ
)

=
∑
i, j

i+ j+1=n

pi (ρ)p j (σ ) (2.4)

Applying (2.4) we have that

p (AND(ρ , σ )) =
∑

n

∑
i, j

i+ j+1=n

pi (ρ)p j (σ ) =
∑

i

pi (ρ)
∑

j

p j (σ ) = p(ρ)p(σ )

Defining OR(ρ , σ ) = NOT (AND(NOTρ , NOTσ )) we have that

p (OR(ρ , σ )) = p(ρ) + p(σ ) − p(ρ)p(σ )

Analogous to (2.4) it follows directly that for δ = AND(ρ , σ ) we have

pδ(n) =
∑
i, j

i+ j+1=n

pρ(i)pσ ( j)

3. EQUIVALENCE CLASSES OF STATES

For ρ , σ ∈ D(H ) write ρ |= σ if p(ρ) ≤ p(σ ). Then |= is a reflexive, transi-
tive relation. We write ρ � σ if p(ρ) = p(σ ). Then � is an equivalence relation
with equivalence classes denoted by [ρ]0. Defining [ρ]0 |= [σ ]0 if ρ |= σ , |= be-
comes a partial order relation on the set of equivalence classes

L0 = {[ρ]0 : ρ ∈ D(H )} = D(H )/�
However, |= is a very weak order and it is not very interesting because it is a total
order. In fact, L0 is isomorphic to [0, 1] ⊆ R in a natural way Gudder (2003). We
now define a more interesting order.

For ρ , σ ∈ D(H ) define ρ ≤ σ if for n = 1, 2, . . . we have that

tr
(
P (n)

1 ρ
) ≤ tr

(
P (n)

1 σ
)

(3.1)

tr
(
P (n)

0 ρ
) ≥ tr

(
P (n)

0 σ
)

(3.2)

We can write (3.1) and (3.2) as pn(ρ) ≤ pn(σ ) and

pρ(n) − pn(ρ) ≥ pσ (n) − pn(σ )

Notice that the second inequality is equivalent to pn(NOTρ) ≥ pn(NOTσ ). Again
≤ is reflexive and transitive and we write ρ ∼ σ if ρ ≤ σ and σ ≤ ρ. Notice that



Computational Logic on Fock Space 1415

ρ ∼ σ if and only if pρ(n) = pσ (n) and pn(ρ) = pn(σ ) for n = 1, 2, . . . . Then
∼ is an equivalence relation and we denote equivalence classes by [ρ]1. Defining
[ρ]1 ≤ [σ ]1 if ρ ≤ σ , ≤ becomes a partial order relation on the set of equivalence
classes

L1 = {[ρ]1 : ρ ∈ D(h)} = D(H )/ ∼

Theorem 3.1. (i) If ρ ≤ σ then NOTρ ≤ NOTσ . (ii) If ρ ∼ σ then NOTρ ∼
NOTσ . (iii) If ρ ∼ ρ ′ and σ ∼ σ ′ then AND (ρ , σ ) ∼ AND (ρ ′, σ ′)

Proof: (i) Assume that ρ ≤ σ . Applying (2.3) and (3.1) gives

pNOTσ (n) − pn(NOTσ ) = pσ (n) − pσ (n) + pn(σ ) = pn(σ ) ≥ pn(ρ)

= pNOT(ρ) − pn(NOTρ)

Hence, NOTσ ≤ NOTρ. (ii) This follows from (i). (iii) Assuming ρ ∼ ρ ′ and
σ ∼ σ ′ we have by (2.4) that

pn(AND(ρ , σ )) =
∑
i, j

i+ j+1=n

pi (ρ)p j (σ ) =
∑
i, j

i+ j+1=n

pi (ρ
′)p j (σ

′)

= pn(AND(ρ ′, σ ′))

Moreover, letting δ = AND(ρ , σ ) and δ′ = AND(ρ ′, σ ′) we have that

pδ(n) = tr
(
P (n)AND(ρ , σ )

) =
∑
i, j

i+ j+1=n

tr(ρi )tr(σ j ) =
∑
i, j

i+ j+1=n

pρ(i)pσ ( j)

=
∑
i, j

i+ j+1=n

pρ ′ (i)pσ ′ ( j) = pδ′ (n)

It follows that AND(ρ , σ ) ∼ AND(ρ ′, σ ′). �

Applying Theorem 3.1 (ii), NOT[ρ]1 = [NOTρ]1 is well defined. Moreover,
NOT (NOT[ρ]1) = [ρ]1 and [ρ]1 ≤ [σ ]1 implies NOT[σ ]1 ≤ NOT[ρ]1. Apply-
ing Theorem 3.1 (iii), AND ([ρ]1, [σ ]1) = [AND(ρ , σ )]1 is well defined and so
is OR ([ρ]1, [σ ]1) = [OR(ρ , σ )]1. Let p(n), n = 1, 2, . . . , be defined by ρ(n) =
P (n)

1 /2n−1. Then pn(ρ(n)) = 1 and p j (ρ(n)) = 0, j �= n. Since [p(n)]1, n = 1, 2, . . . ,
are maximal unrelated elements of L1, there is no largest element of L1. In a sim-
ilar way there is no smallest element of L1. Hence, L1 is an unbounded involution
poset.

For 0 ≤ λ ≤ 1 define

ρn(λ) = 1 − λ

2n−1
P (n)

0 + λ

2n−1
P (n)

1 ∈ D(H ), n = 1, 2, . . .
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For αi ≥ 0 with
∑

αi = 1 and 0 ≤ λi ≤ 1 with λi = 0 whenever αi = 0, i =
1, 2, . . . , define ρ ({αi } , {λi }) by

ρ ({αi } , {λi }) = α1ρ1(λ1) ⊕ α2ρ2(λ2) ⊕ · · ·
Then ρ ({αi } , {λi })n = αnρn(λn), n = 1, 2, . . ., and we have that

pρ({αi },{λi })(n) = αn (3.3)

pn (ρ ({αi } , {λi })) = λnαn (3.4)

For an arbitrary ρ ∈ D(H ) choose αn = pρ(n) and λnαn = pn(ρ), n = 1, 2, . . . . It
follows from (3.3) and (3.4) that ρ ∼ ρ ({αi } , {λi }). Moreover, the corresponding
[ρ]1 �→ ρ ({αi } , {λi }) is bijective and preserves the logical operations. In this way,
each ρ ({αi } , {λi }) gives a unique representation of its equivalence class. We call
({αi } , {λi }) the quantum numbers for the corresponding equivalence class. For
example, the quantum numbers for [ρ(n)]1 are αn = λn = 1, αi = λi = 0 for i �= n.
We now characterize minimal and maximal elements of L1. Not that [ρ]1 is minimal
if and only if NOT[ρ]1 is maximal.

Theorem 3.2. (i) [ρ]1 is minimal in L1 if and only if

ρ ∼
∑ αi

2i−1
P (i)

0 , α ≥ 0,
∑

αi = 1

(ii) [ρ]1 is maximal in L1 if and only if

ρ ∼
∑ αi

2i−1
P (i)

1 , αi ≥ 0,
∑

αi = 1

Proof: (i) Assume that ρ = ∑
(αi/2i−1)P (i)

0 . If ρ1 ≤ ρ then

tr
(
P (n)

1 ρ1
) ≤ tr

(
P (n)

1 ρ
) = 0

so that pn(ρ1) = pn(ρ) for all n. Also,

tr
(
P (n)

0 ρ1
) ≥ tr

(
P (n)

0 ρ
) = αn , n = 1, 2, . . .

Hence,

1 =
∑

αn ≤
∑

tr
(
P (n)

0 ρ1
) = tr(P0ρ1) ≤ 1

It follows that

tr
(
P (n)

0 ρ1
) = αn = tr

(
P (n)

0 ρ
)

Therefore, ρ1 ∼ ρ and [ρ]1 is minimal in L1. Conversely, assume that [ρ]1 is
minimal and let ρ ∼ ρ ({αi } , {λi }). Suppose that αmλm �= 0 and let ρ1 = ρ({αi } ,
{λi/2}). Then

pn(ρ1) = λn

2
αn ≤ λnαn = pn(ρ), n = 1, 2, . . .
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Moreover,

pρ1 (n) − pn(ρ1) = αn − λn

2
αn ≥ αn − λnαn = pρ(n) − pn(ρ), n = 1, 2, . . .

and pm(ρ1) < pm(ρ). Hence, ρ1 ≤ ρ and ρ1 �∼ ρ which is a contradiction. There-
fore, αmλm = 0 for every m = 1, 2, . . . . Without loss of generality, we can as-
sume that λn = 0, n = 1, 2, . . . . Thus, ρ has the form ρ = ∑

(αi/2i−1)P (i)
0 where

α ≥ 0,
∑

αi = 1. (ii) This follows from (i) because [ρ]1 is maximal if and only
if NOT[ρ]1 is minimal. �

Applying Theorem 3.2 we see that [ρ]1 is minimal if and only if its quantum
numbers satisfy λi = 0 for all i and [ρ]1 is maximal if and only if its quantum
numbers satisfy λi = 1 whenever αi �= 0.

We say that ρ ∈ D(H ) is sector down Scotian if P (n)
0 /2n−1 ≤ ρ for some n,

ρ is sector up Scotian if ρ ≤ P (n)
1 /2n−1 for some n and ρ is sector Scotian if for

some n

P (n)
0

2n−1
≤ ρ ≤ P (n)

1

2n−1

Theorem 3.3. (i) ρ is sector up Scotian if and only if p(ρ) = pn(ρ) for some n.
(ii) ρ is sector down Scotian if and only if p(ρ) = 1 − pρ(n) + pn(ρ) for some
n or equivalently p(NOTρ) = pn(NOTρ) for some n. (iii) ρ is sector Scotian if
and only if pρ(n) = 1 for some n.

Proof: (i) The condition ρ ≤ P (n)
1 /2n−1 is equivalent to

tr
(
P (m)

1 ρ
) ≤ tr

(
P (m)

1

P (n)
1

2n−1

)
, m = 1, 2, . . . (3.5)

Now (3.5) is equivalent to pm(ρ) = 0 for m �= n which is equivalent to p(ρ) =
pn(ρ). (ii) Notice that ρ is sector down Scotian if and only if NOTρ is sector up
Scotian. By Part (i) and (2.3) this is equivalent to

1 − p(ρ) = pρ(n) − pn(ρ)

which gives the desired condition. (iii) If ρ is Scotian then by Parts (i) and (ii)
we have that pρ(n) = 1. Conversely, if pρ(n) = 1 then ρ = P (n)ρ P (n) so that
p(ρ) = pn(ρ). Applying Parts (i) and (ii) shows that ρ is Scotian. �

If [ρ]1 has quantum numbers ({αi } , {λi }) we see that NOT[ρ]1 has quantum
numbers ({αi } , {αi (1 − λi )}). Applying Theorem 3.1 (i) we see that ρ is sector up
Scotian if and only if there is an n such that the corresponding quantum numbers
λm = 0 for m �= n. It follows that ρ is sector down Scotian if and only if there is
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an n such that the corresponding quantum numbers λm = 1 whenever αm �= 0 for
m �= n. Finally, ρ is sector Scotian if and only if αn = 1 for some n.

We have considered the concept of Scotian relative to a very specific type
of minimal or maximal element. We now give a more general definition. We say
that ρ is down Scotian relative to the minimal element σ if σ ≤ ρ, ρ is up Scotian
relative to the maximal element σ if ρ ≤ σ , ρ is Scotian relative to the minimal
element σ if σ ≤ ρ ≤ NOTσ .

Theorem 3.4. (i) ρ is up Scotian relative to σ if and only if pn(ρ) ≤ pσ (n) for
all n. (ii) ρ is down Scotian relative to σ if and only if for all n we have that

pn(NOTρ) = pρ(n) − pn(ρ) ≤ pσ (n)

(iii) ρ is Scotian relative to σ if and only if for n we have that

pρ(n) − pσ (n) ≤ pn(ρ) ≤ pσ (n)

Proof: (i) If ρ ≤ σ then for all n we have that

pn(ρ) ≤ pn(σ ) ≤ pσ (n)

Conversely, suppose that pn(ρ) ≤ pσ (n) for all n. Since σ is maximal we have
that pσ (n) = pn(σ ) for all n. Hence, pn(ρ) ≤ pn(σ ) and

pρ(n) − pn(ρ) ≤ pσ (n) − pn(σ )

for all n. Thus, ρ ≤ σ . (ii) This follows from (i) and the fact that σ ≤ ρ if and
only if NOTρ ≤ NOTσ . (iii) This follows from (i) and (ii). �

4. SQUARE ROOT OF NOT

Letting M be the unitary matrix given by

M = 1

2

[
1 + i 1 − i

1 − i 1 + i

]

we have that M = √
X . Let (

√
N )n be the unitary matrix on ⊗n

C
2 given by

(
√

N )n = In−1 ⊗ M , n = 1, 2, . . ., and define the unitary operator
√

N on H by
√

N = P (1)(
√

N )1 P (1) + P (2)(
√

N )2 P (2) + · · ·
= (

√
N )1 ⊕ (

√
N )2 ⊕ · · ·

For ρ ∈ D(H ) define
√

NOT ρ ∈ D(H ) by
√

NOT ρ = √
N

∗
ρ
√

N . Then
√

NOT (
√

NOT ρ) = NOTρ
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so we can think of
√

NOT as the square root of NOT. The operator
√

NOT is a
quantum gate that has no classical analogue (Cattaneo et al., preprint). We shall
incorporate

√
NOT to obtain a quantum computational logic with no classical

analogue. Since P (n)
√

N = √
N P (n) we have that p√

NOT
(n) = pρ(n) for all

n. Let Y be the Pauli matrix

Y =
[

0 −i

i 0

]
and define the unitary matrix Rn on ⊗n

C
n given by Rn = In−1 ⊗ Y , n = 1, 2, . . . .

It is shown in Gudder (2003) that

pn(
√

NOT ρ) = 1

2
pρ(n) + 1

2
tr(Rnρn) (4.1)

For ρ , σ ∈ D(H ) define strong preorder ρ � σ by (i) ρ ≤ σ and (ii)
√

NOT
σ ≤ √

NOT ρ. It is clear thatρ � σ implies thatρ ≤ σ . However, simple examples
show that the converse does not hold. As before � is reflexive and transitive and
we define the strong equivalence relation ρ ≈ σ if ρ � σ and σ � ρ. Of course,
ρ ≈ σ if and only if ρ ∼ σ and

√
NOT ρ ∼ √

NOT σ . Hence ρ ≈ σ if and only
if for all n we have that

(1) pρ(n) = pσ (n)
(2) pn(ρ) = pn(σ )
(3) pn(

√
NOT ρ) = pn(

√
NOT σ )

Applying (4.1) we see that point (3) is equivalent to tr(Rnρn) = tr(Rnσn) for all n.
Denote the ≈ equivalence classes by [ρ]2 and let

L2 = {[ρ]2 : ρ ∈ D(H )} = D(H )/≈
Defining [ρ]2 ≤ [σ ]2 if ρ � σ , ≤ becomes a partial order relation on L2.

Since Rn is self-adjoint and unitary we have that −1 ≤ tr(Rnρn) ≤ 1 Letting
βn = tr(Rnρn) we conclude that −1 ≤ βn ≤ 1 and by (4.1) we have

βn = 2pn(
√

NOT ρ) − pρ(n)

Summing over n gives −1 ≤ ∑
βn ≤ 1. Then each [ρ]2 is determined by the

quantum numbers

[ρ]2 → ({αi } , {λi } , {βi })
where {αi }, {λi } are as before and −1 ≤ βi ≤ 1, −1 ≤ ∑

βi ≤ 1. We do not know
whether the converse holds. That is, given such a set of quantum numbers, does
there exist a ρ ∈ D(H ) satisfying: pρ(n) = αn , pn(ρ) = λnαn , pn(

√
NOT ρ) =

1
2αn + 1

2βn? Also, can we find representatives of [ρ]2 analogous to [ρ]1 → ρ({αi } ,
{λi })?
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Theorem 4.1. (i) If ρ � σ then NOTσ � NOTρ. (ii) If ρ ≈ σ , then NOTρ ≈
NOTσ and

√
NOT ρ ≈ √

NOT σ . (iii) If ρ ≈ ρ ′ and σ ≈ σ ′ then AND(ρ , σ ) ≈
AND(ρ ′, σ ′).

Proof: (i) Suppose that ρ � σ . We then have that ρ ≤ σ so by Theorem 3.1 (i),
NOTσ ≤ NOTρ. By definition

√
NOT σ ≤ √

NOT σ so again by Theorem 3.1 (i)
√

NOT NOTρ = NOT
√

NOT ρ ≤ NOT
√

NOT σ =
√

NOT NOTσ

Hence, NOTσ � NOTρ. (ii) If ρ ≈ σ then NOTρ ≈ NOTσ follows from (i). We
also have that

√
NOT ρ ∼ √

NOT σ and
√

NOT
√

NOT ρ = NOTρ ∼ NOTσ =
√

NOT
√

NOT σ

so that
√

NOT ρ ≈ √
NOT σ . (iii) Suppose that ρ ≈ ρ ′ and σ ≈ σ ′. By Theorem

3.1 (iii), AND(ρ , σ ) ∼ AND (ρ ′, σ ′). We must show that

pn(
√

NOT AND(ρ , σ )) = pn(
√

NOT AND(ρ ′, σ ′)) (4.2)

for all n. But (4.2) is a consequence of the following result [6]

pn(
√

NOT AND(ρ , σ )) = 1

2

∑
i, j

i+ j+1=n

pρ(i)pσ ( j) (4.3)

Hence, AND(ρ , σ ) ≈ AND(ρ ′, σ ′). �

From (4.3) we obtain the interesting fact that

p(
√

NOT AND(ρ , σ )) = 1

2

∑
n

∑
i, j

i+ j+1=n

pρ(i)pσ ( j)

= 1

2

∑
pρ(i)

∑
pσ ( j) = 1

2
Applying Theorem 4.1 the following relations and operations are well defined:
[ρ]2 ≤ [σ ]2 if ρ � σ , NOT[ρ]2 = [NOTρ]2,

√
NOT [ρ]2 = [

√
NOT ρ]2, AND

([ρ]2, [σ ]2) = [AND(ρ , σ )]2,

OR ([ρ]2, [σ ]2) = [NOT AND(NOTρ , NOTσ )]2

We then have that NOT NOT[ρ]2 = [ρ]2, [ρ]2 ≤ [σ ]2 implies that NOT[σ ]2 ≤
NOT[ρ]2 and

√
NOT

√
NOT [ρ]2 = NOT[ρ]2.

We say that ρ is strongly sector down Scotian if P (n)/2n−1 � ρ for some n, ρ
is strongly sector up Scotian if ρ � P (n)

1 /2n−1 for some n and ρ is strongly sector
Scotian if for some n

P (n)
0

2n−1
� ρ � P (n)

1

2n−1
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Theorem 4.2. (i) ρ is strongly sector up Scotian if and only if there exists
an n such that p(ρ) = pn(ρ) and pn(

√
NOT ρ) ≥ 1/2. (ii) ρ is strongly sector

down Scotian if and only if there exists an n such that p(ρ) = 1 − pρ(n) +
pn(ρ) and pρ(n) ≥ pn(

√
NOT ρ) + 1

2 (and hence, pn(
√

NOT ρ) ≤ 1/2.) (iii)
ρ is strongly sector Scotian if and only if there exists an n such that
pρ(n) = 1 and

p(
√

NOT ρ) = pn(
√

NOT ρ) = 1

2

Proof: (i) By definition ρ is strongly up Scotian if and only if ρ ≤ P (n)
1 /2n−1 and√

NOT P (n)
1 /2n−1 ≤ √

NOT ρ for some n. By Theorem 3.2 (i) the first inequality
is equivalent to p(ρ) = pn . By (3.1) and (3.2) the second inequality is equivalent
to

pm

(√
NOT

P (n)
1

2n−1

)
≤ pm(

√
NOT ρ), m = 1, 2, . . . (4.4)

tr

(
P (m)

0

√
NOT

P (n)
1

2n−1

)
≥ tr

(
P (m)

0

√
NOT ρ

)
, m = 1, 2, . . . (4.5)

Now (4.4) is equivalent to pn(
√

NOT ρ) ≥ 1/2 and (4.5) holds automatically.
(ii) This follows from (i) and the fact that ρ is strongly sector down Scotian if and
only if NOTρ is strongly sector up Scotian. (iii) This follows from (i) and (ii). �

We do not know what the minimal and maximal elements of L2 are or even
whether they exist. We say ρ is strongly down Scotian relative to the L1 minimal
element ρ if σ � ρ, ρ is strongly up Scotian relative to the L1 maximal element
σ if ρ � σ , ρ is strongly Scotian relative to the L1 minimal element σ if σ � ρ �
NOTσ .

Theorem 4.3. (i) ρ is strongly up Scotian relative to σ if and only if pn(ρ) ≤
pσ (n) and pn(

√
NOT ρ) ≥ pσ (n)/2 for every n. (ii) ρ is strongly down Scotian

relative to σ if and only if

pn(NOTρ) = pρ(n) − pn(ρ) ≤ pσ (n)

and pn(
√

NOT ρ) ≤ pσ (n)/2 for every n. (iii) ρ is strongly Scotian relative to σ

if and only if

pρ(n) − pσ (n) ≤ pn(ρ) ≤ pσ (n)

and pn(
√

NOT ρ) = pσ (n)/2 for every n.
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Proof: (i) By Theorem 3.4 (i) we have that ρ � σ if and only if pn(ρ) ≤ pσ (n)
and

√
NOT σ ≤ √

NOT ρ. The second inequality is equivalent to

pσ (n)

2
= pn(

√
NOT σ ) ≤ pn(

√
NOT ρ).

(ii) This follows from (i). (iii) This follows from (i) and (ii). �
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